Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10042, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340036

RESUMO

We develop a thermoelectric generator based on catalytic combustion and operating in the low power range (up to 10 W). Considering the target of small-scale thermoelectric generators, the additive technique was chosen as an enabling technology to customize the different parts of the presented device. The generator consists of a hexagonal shaped combustion chamber coupled to commercial thermoelectric modules, water-cooled at the cold side. Thanks to the components design, heat transfer across each part of the system is properly driven enhancing the thermal management of the system. Moreover, in order to improve the overall efficiency, exhausts outlet is designed to promote heat recovery. The generator is characterized achieving an electrical power output close to 9 W in continuous regime, with an overall efficiency of 3.55%. The compact size, the light weight, the simple design and the reliability in continuous operating conditions are all promising features of the device described. Furthermore, the materials chosen for the device can suggest a way to fabricate cheaper heat exchangers, actually one of the main costs of the device development.

2.
J Nanosci Nanotechnol ; 17(3): 1592-600, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-29693966

RESUMO

In this work the thermoelectric generator (TEG) based on catalytic combustion already developed in our lab has been further investigated and improved. The system made of two thermoelectric (TE) modules coupled with a catalytic combustor has been used in this work to obtain higher overall efficiency by adding hydrogen to the fuel mixture. Since implementation of hydrogen as a fuel has shown low and stable combustion temperature in literature, it is expected to achieve good overall efficiency of TEG. Moreover, hydrogen can be used to improve the system inducing self-ignition. Focus of the present work is the implementation of different mixture proportions, varying the amount of hydrogen, and the investigation of their effects on the overall efficiency. The overall TEG efficiency, has been evaluated by parallel characterization of thermoelectric modules and exhaust gases composition. The system performances have been characterized using different mixtures: the results indicate that addition of H2 to the fuel contribute to increase the chemical and overall TEG efficiency respect to previous work, producing up to 5.92 W of electrical power. Finally, the effects of H2 for on self-ignition conditions have been investigated finding the minimum H2 amount for different gas flow rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...